

Two-Factor Authentication Basics
for Linux

Pat Barron
(pat@lectroid.com)

Western PA Linux Users Group

Some Basic Security Terminology

● Two of the most common things we discuss
related to security are
– Authentication – proving who you are

– Authorization – deciding what you are allowed to do

● This presentation only discusses mechanisms of
authentication. Authorization decisions are
made by human beings (i.e., somene taking
action to put your userid in the 'sudoers' file,
etc.)

Proving your identity to a computer-
based service

● This is a challenge, since computers aren't sentient,
so they can't get to know you, and recognize you the
way other humans can.

● The most traditional way for computer-based
services to identify users is via a password.
– A password is effectively a shared secret between you

and the computer, and (in theory) no other party.

– If you claim to be X, and you demonstrate that you know
X's password, then the system concludes that you must,
in fact, be X.

Passwords aren't perfect (in some
cases, they're not even “good”...)

● Demonstrating that you know X's password doesn't
prove that you are X.

● Demonstrating that you know X's password only proves
that you are someone who knows X's password....

● Passwords get written down, stolen, intercepted in
transit, phished, and all kinds of other bad things.

● If someone gets your password, and that is all that is
used to authenticate you, they can masquerade as you
as they please, until you change your password.

Improving the situation

● We can improve the reliability of authentication
by testing additional “authentication factors”.

● The more points of data we have to make the
case for your identity, the more confidence we
have in the authentication.
– Testing only one authentication factor is referred to

as “single-factor authentication” - testing more than
one before deciding that the subject's identity is
sufficiently proved is “multi-factor authentication”.

Multi-Factor Authentication

● An authentication “factor” is some characteristic that we can attempt to
test, that is (theoretically) unique to a specific party.
– Knowledge factors – something you know (password, PIN, security question,

etc.)

– Possession factors – something you have (credit cards, keys, PKI certificates,
authentication tokens, etc.)

– Inheritance factors – something you are (fingerprints, retina pattern, voiceprint,
etc.)

● The usefulness of any of these factors for authentication depends on
the idea that it would be impractical for anyone other than the individual
we wish to identify to successfully pass a test of that factor.
– We already know this isn't always the case - though some factors are harder to

“hijack” than others...

An example of “real world” single-
factor authentication.

● Consider the process of opening your locked front door
– The locked door is intended to keep out anyone who is not

allowed in.

– You give keys to anyone who is allowed in. This is an
authorization mechanism.

– The key is an authentication mechanism – though it doesn't
identify an individual, it simply identifies “a person who is allowed
in”.

– As a consequence, anyone who can get hold of a key, by
whatever means, can masquerade as “a person who is allowed in”
until such time as the lock is changed – the lock doesn't know any
better...

A more familiar example

● You use a userid and password to log in to your Linux
system.

● You make a long, complicated password, because
you're told that is more “secure”. But it's also hard to
remember, so you write it down on a notepad next to
your computer...

● Anyone who happens to see the notepad can now
masquerade as you and access resources on your
computer in your name, until such time as you change
your password.

A “real world” example of multi-
factor authentication

● Withdrawing cash at the ATM
– You go to the machine

– You put in your card
– You punch in your PIN number
– You withdraw some money

● Note that we need the card, and the PIN. Neither one, by itself, is
sufficient.

● We are testing two authentication factors – possession of the card
(something you have), and knowledge of the PIN (something you know).

● Anyone who wants to masquerade as you to access your account must
get possession of the card, and knowledge of the PIN, or they will not
succeed.

Why is multi-factor authentication
helpful?

● Testing multiple factors strengthens the case to “believe” the
authentication.
– You know your bank card PIN, but someone may look over your

shoulder and watch you key it in.

– You have your bank card, but if you lose it and someone else finds
it, now that person has it instead of you.

– These are things which are known to happen in the real world – so
if someone knows your PIN, or has your card, should someone
really believe that they're you?

– The chance of someone stealing your PIN, and getting possession
of your card, is much less likely – still possible, but sufficiently less
likely that we are satisfied with this.

Accidentally “breaking” multi-factor
authentication

● In systems that use two factors – specifically,
“something you know”, and “something you have”,
naive users may break the system by storing the two
factors together – such as, writing one's bank card
PIN on the card itself.

● This effectively changes the system to single-factor
– in this example, now physical possession of the
bank card is enough to successfully authenticate.

● So, don't do this....

Implementing multi-factor
authentication on computer systems
● A common way to implement multi-factor

authentication is to add an authentication token
(“something you have”) to the traditional password
(“something you know”)
– Hardware tokens – dedicated devices (usually very small)

that are used to interact with the authentication process.
● RSA “SecureID” tokens are a very popular form of this

– Software tokens – an app that runs either on your own
computer, or a handheld computer (e.g., a smartphone)
that can interact with the authentication process.

How tokens typically work

● A secret is shared between the token, and the
computer system.

● When authenticating to the computer system, the
token is used in some way during the authentication
process.

● If the token interaction succeeds (i.e., if it seems that
you have a token that knows the secret shared with
the system), the system assumes that whoever is
authenticating must be in possession of the token.

Advantages of hardware tokens

● Typically, they are simpler.
● Typically, they are made to be tamper-resistant

– it is very hard to take them apart to extract the
shared secret (which would allow you to clone
the token). Attempting to disassemble a
hardware token typically destroys the secret.

Disadvantages of hardware tokens

● You may not know what is going on inside
them, and may not be able to design software
to be compatible with them – not necessarily
open-source friendly.
– You may get locked into a single vendor.

● They typically have a limited lifespan, after
which they must be replaced.

Advantages of software tokens

● Smartphones are commonplace – why carry an
additional device as a token, when you always
have your smartphone with you all the time?

● Software token apps are available that conform
to open standards.

Disadvantages of software tokens

● If someone else gets possession of your phone,
they may be able to extract the shared secret
from your software token, and thus clone your
token.
– This is a similar problem to the “writing your PIN on

the ATM card” problem, but is mitigated by using
the token as a second factor – still using a
traditional password as well.

Software authentication tokens on
Linux

● We can implement two-factor authentication on
Linux by using “oath-toolkit”, which is available
on a number of Linux distributions.

● OATH is an open authentication architecture
promoted by The Initiative for Open
Authentication.
– Not to be confused with OAuth, which is also an

authentication technology, but is different than what
we are talking about here.

What oath-toolkit does

● oath-toolkit implements software token support (both client
and server) based on the HOTP (HMAC-based One Time
Password) and TOTP (Time-based One Time Password)
standards, which are published as RFCs.

● The “oathtool” utility is a command-line based testing tool
that can also in itself be used as a software token to
interact with other systems (though it's very awkward to use
it this way).

● The client side of oath-toolkit consists of a PAM module
that can be plugged into the usual PAM security
infrastructure.

HMAC-based One Time Password
(HOTP)

● Generates single-use passwords on demand, based
on a secret shared with between the user and the
system, and a moving sequence identifier.

● Each time you authenticate, the sequence number
changes.

● One problem – if you use the HOTP token to generate
a one-time password at a time when you're not
actually authenticating to the computer, it can throw
HOTP out of sync, and you may have to reset the
token and the server's idea of your token's state.

Time-based One Time Password
(TOTP)

● This is effectively the same as HOTP, except the sequence
identifier used is the current time.
– This is similar to what SecurID tokens do, where they constantly

display a token code that changes periodically, and when you
authenticate, you provide whatever token code is displayed at
that moment. TOTP works in this way as well.

● This eliminates the problem of the HOTP token getting
thrown out of sequence sync.

● However, it introduces a new requirement that the
computer system and the software token be kept in close
time sync.

What you need to use oath-toolkit

● You need the appropriate Linux packages installed on the
system you're using OATH to protect
– Fedora: “yum install oathtool pam_oath”

– Debian: “apt-get install oathtool libpam-oath”

● You need to plug the pam_oath.so module into your PAM
configuration (see live demo).

● You probably need a software token app for your smartphone
(I happen to use an app called “mOTP” on Android, but Red
Hat provides a free Android app called “FreeOTP”, as does
Google Authenticator, or you can use any other app that
supports HOTP and/or TOTP).

Caveats about oath-toolkit to keep
in mind

● The biggest problem with oath-toolkit is that it is very poorly
documented, particularly the PAM module.
– There is no man page for the PAM module, the “documentation” exists

only in a README file installed under /usr/share/doc/pam_oath on
Fedora (may be elsewhere on other distros). The format of the “shared
secret” file is documented only in the source code itself – and it's not
really “documented”, you just need to read the source and see what it is
looking for....

● Beware that you may need to disable SELinux (or switch it to
“permissive” mode) in order to make the PAM module work – I
had to do this on Fedora 21. Should be fixable for someone with
time and energy to analyze the SELinux logs and fix the policy.

Live Demo Now

Backup materials

● Links to all of the materials I referenced will be
added to the version of this presentation that is
uploaded to the WPLUG wiki.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

