The Open Pitt

What's cooking in Linux and Open Source in Western Pennsylvania

Issue 41

June 2010

Book Review: R in a Nutshell by Bobbie Lynn Eicher

Author: Joseph Adler
Publisher: O'Reilly Media
ISBN13: 978-0-596-80170-0
$49.99, 640 pages, 2009

The R language and environment are
GNU projects licensed under the
GPL. R is designed to make it easy to
do statistical calculations and create
graphics representing the results. The
project's web site is hosted at
<http://www.r-project.org/>.

R in a Nutshell is broken into
four main parts. The author begins by
going over the the basics, including
how to set up the R environment.
There's also a brief tutorial about the
workings of the language. As you
progress through the book, it provides
a more detailed overview of the
language, discussion of how to work
with data, and an explanation of how
R handles statistical modeling.

Books  about  programming
languages often make an awkward
attempt to be both a tutorial and a
reference. In the case of R in a
Nutshell, however, this approach
actually makes sense. It covers a
specialized language that most
programmers will only use when
they're faced with a very particular
type of problem. Since it's not the
sort of language that most people will
be using for their everyday
programming, keeping a tutorial on
hand to refresh your memory is
worthwhile.

The author does what he can to
make the explanations as clear as
possible. Given that it's a
combination of two different subjects
that few people understand well—
programming and  statistics—it's
unavoidable that the material some-
times becomes very complex. The
use of sample data from a variety of
fields is particularly helpful, since it
makes it easier to get a sense of when
the language might come in handy.
Explanations of the mathematical
calculations involved are brief, so if
you don't already understand statistics
well you'll need a separate reference
focusing on that.

Most application programmers
are probably never going to run into a
situation where R is the best language
for the job, so it's not really the type
of material that's worth studying just
in case you need it someday.
However, if you have any projects
that involve processing large amounts
of data and using statistics to turn it
into useful information, this is
definitely a valuable resource.

Bobbie Lynn Eicher is a long-time
member of WPLUG and holds a B.S. in
Computer Science from the University of
Pittsburgh.

O'Reilly Media provided a free electronic
copy of R in a Nutshell to Bobbie so that
she could write this review. There was no
other compensation involved.

June Roundup

Jun. 12 General User Meeting:
Vance Kochenderfer tackled a
couple shell scripting exercises to
demonstrate the capabilities of some
of the standard UNIX text processing
tools like awk, sed, tr, wc, cat, and
grep. The first looked at various
ways of processing a text file to
determine how many non-blank lines

it contained. @The second exercise
involved parsing a provided value to
decide whether or not it could be
considered numeric. A description of
the exercises and some accompanying
explanation of the solutions can be
found on the WPLUG wiki at
<http://www.wplug.org/wiki/
Meeting-20100612>.

www.wplug.org

Call for Presentations

Have something to say? WPLUG
holds a General User Meeting
each month, and invites presenta-
tions on suitable topics.

Take this opportunity to
connect with Pittsburgh's Free and
Open Source software community.

Maybe you want to speak
about how you use Linux or BSD in
business, school, or at home.

Or you could go into the
technical details of a particular
utility or programming language.

Perhaps there's a new web
technology or desktop framework
you'd like to show off.

Or maybe Free and Open
Source software allowed you to
accomplish something you didn't
think would be possible.

Contact the WPLUG Program
Committee with your proposals at
<events@wplug.org>. We look
forward to hearing from you!

Coming Events

Jul. 10: General User Meeting,
Topic: Extending
OpenOffice.org. 10:30Am to
12:30pm, Wilkins School
Community Center

Jul. 31: Installfest. 11am to
4:30pm, Northland Public
Library

Aug. 14: General User Meeting.
10:30Am to 12:30pm, Wilkins
School Community Center

Aug. 29: 9th Annual Open
Source Picnic. Snyder Park,
Whitehall

The public is welcome at all events




Page 2

The Open Pitt

June 2010

UNIX Curio

This series is dedicated to exploring
little-known—and occasionally use-
ful—trinkets lurking in the dusty
corners  of  UNIX-like operating
systems.

Imagine, if you will, a Jane Austen
novel about three sisters. The first is
well-known and celebrated by every-
one; the second, while slightly
smarter and more capable, is
significantly less popular; and the
third languishes in near-total isola-
tion and obscurity. These three
sisters live on any UNIX-like system,
and their names are grep, egrep, and
fgrep.

We will assume you are already
familiar with grep—egrep  works
pretty much the same, except she
handles extended regular expression
syntax. (When writing shell scripts
intended to be portable, be careful to
call egrep if your expression has
backreferences or uses +, ?, |, or
braces as metacharacters. Some
versions of GNU grep make no
distinction  between  basic and
extended regular expressions, so
you may be surprised when your
script works on one system but not
another.)

But our subject for today is poor,
unnoticed fgrep. While the plainest
sister of the three, she really doesn't
deserve to be ignored. The "f" in her
name stands either for fixed-string or
fast, depending on who you ask.
She does not handle regular
expressions at all; the pattern she is
given is taken literally. This is a
great advantage when what you are
searching for contains characters
having special meaning in a regular
expression.

Suppose you have a directory
full of PHP scripts and want to find
references to an array element called
$tokens[0]. You can try grep (note
that the single quotes are necessary
to prevent the shell from interpreting

$tokens as a shell variable):
$ grep '$tokens[0]' *.php

But there is no output. The
reason is that the brackets have

special significance to grep; [0] is
interpreted as a character class
containing only 0. Therefore, this
command looks for the string
$tokens®, which is not what we
want. We would have to escape the
brackets with backslashes to get the
correct match (some implementa-
tions may require you to escape the
dollar sign also):

$ grep '$tokens\[0\]' *.php

parser.php: $outside[] =
$tokens[0];

Instead of fooling with all that
escaping (which might get tedious if
our pattern contains many special
characters), we can just use fgrep
instead:

$ fgrep '$tokens[0]' *.php

parser.php: $outside[] =
$tokens[0];

One place where fgrep can be
particularly handy is when searching
through log files for IP addresses.
With ordinary grep, the pattern
43.2.1.0 would match 43.221.0.123,
43.2.110.123, and a bunch of other
IP addresses you're not interested in
because the dot metacharacter will
match any character. To make sure
you only matched a literal dot you'd
have to escape each one with a
backslash or, better yet, use fgrep.

But what about the claim that
fgrep is fast? On GNU systems,
there is usually one single binary that
changes its behavior depending on
whether it is called as grep, egrep, or
fgrep. (Actually, this is in line with
the POSIX standard, which depre-
cates egrep and fgrep in favor of a
single grep command taking the -E
option for using extended regular
expressions and the -F option for
doing fixed-string searches.)

In testing, we found that when
specifying a single pattern on the
command line, fgrep wasn't really
any faster than grep. However,
when using the -f option to specify a
file containing a list of a couple
dozen patterns, fgrep could consis-
tently produce a 20% time savings.
On systems where grep and fgrep

The Open Pitt is published by
the Western Pennsylvania Linux
Users Group
<http://www.wplug.org/top>

Editor: Vance Kochenderfer

What is Linux?

Linux is a kernel, the core of a computer oper-
ating system, created by Linus Torvalds. It is
typically packaged as a distribution, which in-
cludes the extra programs necessary to make a
computer functional and useful. Since 1991, it
has grown from a one-man project which ran
on one computer to one with thousands of con-
tributors running on everything from mobile
phones to million-dollar supercomputers.

What are Open Source and Free Software?
Open Source and Free Software provide you,
the user, with the opportunity to see the source
code of the programs you use. You are free to
use it, share it with others, and even make
changes to it if you wish. While the Free Soft-
ware and Open Source communities differ in
their philosophical approach, in practical terms
they share nearly identical goals. Learn more
at <http://www.opensource.org/>
and <http://www.gnu.org/>.

This newsletter was produced using Open
Source and Free Software.

Copyright 2010 Western Pennsylvania Linux
Users Group. Any article in this newsletter
may be reprinted elsewhere in any medium,
provided it is not changed and attribution is
given to the author and WPLUG.

are different binaries, there can
potentially be a more dramatic
difference in speed and even
memory usage.

In our hypothetical Austen novel,
the neglected sister would probably
be driven to a bad end, to be only
spoken of afterward in hushed
whispers.  Don't let that happen!
Whenever you need to search for a
string, but don't require the power of
regular expressions, get into the
habit of calling on fgrep. She can be
very helpful and deserves more
attention than she gets. You'll save
yourself the trouble of worrying about
metacharacters and maybe some
running time as well.




